On the implementation of LIR: the case of simple linear regression with interval data
نویسندگان
چکیده
This paper considers the problem of simple linear regression with intervalcensored data. That is, n pairs of intervals are observed instead of the n pairs of precise values for the two variables (dependent and independent). Each of these intervals is closed but possibly unbounded, and contains the corresponding (unobserved) value of the dependent or independent variable. The goal of the regression is to describe the relationship between (the precise values of) these two variables by means of a linear function. Likelihood-based Imprecise Regression (LIR) is a recently introduced, very general approach to regression for imprecisely observed quantities. The result of a LIR analysis is in general set-valued: it consists of all regression functions that cannot be excluded on the basis of likelihood inference. These regression functions are said to be undominated. Since the interval data can be unbounded, a robust regression method is necessary. Hence, we consider the robust LIR method based on the minimization of the residuals’ quantiles. For this method, we prove that the set of all the intercept-slope pairs corresponding to the undominated regression functions is the union of finitely many polygons. We give an exact algorithm for determining this set (i.e., for determining the set-valued result of the robust LIR analysis), and show that it has worst-case time complexity O(n3 logn). We have implemented this exact algorithm as part of the R package linLIR.
منابع مشابه
An Exact Algorithm for Likelihood-Based Imprecise Regression in the Case of Simple Linear Regression with Interval Data
Likelihood-based Imprecise Regression (LIR) is a recently introduced approach to regression with imprecise data. Here we consider a robust regression method derived from the general LIR approach and we establish an exact algorithm to determine the set-valued result of the LIR analysis in the special case of simple linear regression with interval data.
متن کاملNew Approach in Fitting Linear Regression Models with the Aim of Improving Accuracy and Power
The main contribution of this work lies in challenging the common practice of inferential statistics in the realm of simple linear regression for attaining a higher degree of accuracy when multiple observations are available, at least, at one level of the regressor variable. We derive sufficient conditions under which one can improve the accuracy of the interval estimations at quite affordable ...
متن کاملInvestigation Of The Requirement &Constraints Affecting Teleworking In Government Institutes; Case Study : Research Institutes of Minister of Roads and Urban Development
Teleworking as an innovative way has many benefits in governmental, organizational and individual levels, but it faced with different variables in plan and implementation which is caused to low acceptance rate in organizations. By identifying and controlling these variables, managers and decision-makers can use teleworking programs in their organizations. The aim of this study is to investigate...
متن کاملInvestigation Of The Requirement &Constraints Affecting Teleworking In Government Institutes; Case Study : Research Institutes of Minister of Roads and Urban Development
Teleworking as an innovative way has many benefits in governmental, organizational and individual levels, but it faced with different variables in plan and implementation which is caused to low acceptance rate in organizations. By identifying and controlling these variables, managers and decision-makers can use teleworking programs in their organizations. The aim of this study is to investigate...
متن کاملAn Efficient Economic-Statistical Design of Simple Linear Profiles Using a Hybrid Approach of Data Envelopment Analysis, Taguchi Loss Function, and MOPSO
Statistically constrained economic design for profiles usually refers to the selection of some parameters such as the sample size, sampling interval, smoothing constant, and control limit for minimizing the total implementation cost while the designed profiles demonstrate a proper statistical performance. In this paper, the Lorenzen-Vance function is first used to model the implementation...
متن کامل